People with Visual Impairment Training Personal Object Recognizers: Feasibility and Challenges

論文URL:http://dl.acm.org/citation.cfm?doid=3025453.3025899

論文アブストラクト:Blind people often need to identify objects around them, from packages of food to items of clothing. Automatic object recognition continues to provide limited assistance in such tasks because models tend to be trained on images taken by sighted people with different background clutter, scale, viewpoints, occlusion, and image quality than in photos taken by blind users. We explore personal object recognizers, where visually impaired people train a mobile application with a few snapshots of objects of interest and provide custom labels. We adopt transfer learning with a deep learning system for user-defined multi-label k-instance classification. Experiments with blind participants demonstrate the feasibility of our approach, which reaches accuracies over 90% for some participants. We analyze user data and feedback to explore effects of sample size, photo-quality variance, and object shape; and contrast models trained on photos by blind participants to those by sighted participants and generic recognizers.

日本語のまとめ:

「日本語のまとめ」はツイッターに投稿する予定です。ツイッターでは110文字程度まで表示可能です。それ以降はツイッターに投稿する際にはざっくり削除されます。ウェブサイト上では削除されずに残りますが、一方であまり長いとまとめの意味がなくなるので、110字程度でお願いします。修正したい場合には、再度この画面から登録してください。一番最後に登録したものが採用されます。

(99文字)